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Abstract. This study investigates the effectiveness of deep learning based 
personalization in optimizing cognitive load and enhancing learning efficiency in 
primary science education. Drawing upon Cognitive Load Theory, the research 
addresses how advanced AI models specifically Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory (LSTM) architectures can dynamically adjust 
instructional content to meet learners’ cognitive needs in real time. Using a quasi-
experimental design, 50 Grade 5 students were divided into AI and control groups, 
with the intervention delivered via an AI-enhanced Learning Management System 
(LMS). Quantitative findings reveal a 28.5% reduction in extraneous cognitive load 
and a 22.2% increase in germane cognitive load among the AI group, alongside 
higher post-test performance and a superior learning efficiency index (0.72 vs. 0.48). 
These outcomes suggest that the AI-driven system effectively minimized unnecessary 
processing while fostering deeper engagement and schema construction. Qualitative 
data from classroom observations and student interviews further support these 
results, highlighting increased learner autonomy, metacognitive awareness, and 
instructional responsiveness. Teachers benefited from real-time analytics, enabling 
more adaptive and differentiated instruction. The study concludes that deep learning 
personalization not only improves cognitive efficiency but also transforms the 
instructional landscape by supporting more equitable, individualized, and cognitively 
attuned science learning environments. These findings offer critical implications for 
digital pedagogy, curriculum design, and AI integration in STEAM education, 
particularly in underrepresented or early learning contexts. By reengineering science 
instruction through intelligent technologies, this research contributes to the 
development of future-ready, inclusive education systems grounded in cognitive 
science and data-informed personalization. 

Keywords: cognitive load, deep learning, AI personalization, primary education, 
science learning, instructional efficiency 

 

1. Introduction  
The 21st century has witnessed the accelerated integration of artificial intelligence (AI) and 

deep learning (DL) technologies across various sectors, with education emerging as one of the 
most transformative domains. The convergence of pedagogical innovation and computational 
intelligence has fostered new paradigms of personalized, data-informed instruction, enabling 
educational systems to shift from static, one-size-fits-all approaches toward dynamic, learner-
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centered experiences (Holmes et al., 2022; Zawacki-Richter et al., 2019). In this context, AI-
powered personalization is increasingly viewed as a strategic mechanism to address the 
longstanding issue of individual differences in cognitive capacity, prior knowledge, motivation, 
and learning pace. Such disparities are particularly evident in primary science education, where 
abstract theories, unfamiliar vocabulary, and multistep problem-solving tasks pose significant 
cognitive demands on young learners (Xie et al., 2023; Chen et al., 2021). 

To address these demands effectively, it is crucial to examine the cognitive architecture that 
governs how information is processed, stored, and retrieved. Cognitive Load Theory (CLT), 
originally conceptualized by Sweller (1988), provides a robust framework for understanding the 
constraints of working memory during learning tasks. CLT distinguishes among three types of 
cognitive load: intrinsic load, which arises from the inherent complexity of the content; germane 
load, which supports schema construction and automation; and extraneous load, which is 
generated by suboptimal instructional design (Leppink et al., 2019). Of particular concern in 
digital learning environments is the extraneous cognitive load, as it often results from 
unnecessary distractions, poor interface navigation, or ineffective sequencing of content   all of 
which can severely impede learners’ ability to internalize core scientific concepts (Kalyuga, 
2020). 

In this regard, recent advances in deep learning offer a promising solution to dynamically 
mitigate extraneous load. DL architectures such as Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory (LSTM) networks have demonstrated exceptional capabilities in 
recognizing patterns, predicting learner behavior, and facilitating real-time content adaptation 
based on user interaction data (Tuomi, 2022). These technologies can model complex, temporal 
learning trajectories and personalize content not only based on performance outcomes but also on 
affective and behavioral signals such as hesitation, navigation paths, or engagement drops 
(Luckin et al., 2023). The implications of such models for primary science instruction are 
profound: by intelligently aligning instructional delivery with learners' evolving cognitive states, 
AI systems can help reduce the extraneous cognitive burden, thereby enhancing the 
effectiveness and efficiency of learning (Chen et al., 2021; Xie et al., 2023). 

Nevertheless, despite the theoretical promise and growing interest in AI in education 
(AIED), there remains a paucity of empirical studies focusing on how deep learning-based 
personalization directly impacts cognitive load dimensions, particularly in early education 
contexts within underrepresented or non-Western settings. The majority of existing research 
tends to concentrate on higher education, well-resourced environments, or controlled laboratory 
conditions, thus limiting the generalizability of findings (Zawacki-Richter et al., 2019; Holmes et 
al., 2022). Furthermore, few studies systematically examine the interplay between AI-driven 
adaptation and the cognitive processing demands of science content, which often involves 
multimodal reasoning, dynamic visualizations, and procedural understanding. 

This study addresses this empirical and contextual gap by investigating the extent to which 
deep learning-driven personalization can reduce extraneous cognitive load and improve learning 
efficiency in primary science education. By applying convolutional and recurrent neural 
architectures within a customized learning management system (LMS), the research aims to 
monitor, interpret, and adapt to students' cognitive and behavioral patterns in real time. The 
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focus on primary learners is particularly strategic, as this developmental stage is critical for 
establishing foundational scientific literacy and fostering long-term interest in STEM disciplines. 
Through a quasi-experimental mixed-methods approach, this study not only seeks to quantify 
cognitive load reduction but also to explore how intelligent instructional systems can contribute 
to more equitable and cognitively optimized science learning environments. 

Ultimately, the goal is to provide both theoretical insights and practical guidance for the 
implementation of AI in education. By centering cognitive optimization through deep learning 
personalization, this research contributes to the broader discourse on how intelligent 
technologies can be harnessed to support more inclusive, effective, and future-ready models of 
teaching and learning. 

 
2. Method 

This research employed a quasi-experimental pre-test/post-test design involving control and 
experimental groups. The intervention centered on a Learning Management System (LMS) 
integrated with convolutional neural networks (CNNs) and long short-term memory (LSTM) 
models to personalize science learning content. The system adapted presentation formats and 
learning sequences based on student behavior and performance patterns. A total of 50 Grade 5 
students from four public elementary schools in Bali participated. They were randomly assigned 
to either the AI-intervention group (n = 25) or the control group (n = 25). The intervention 
lasted four weeks and focused on science topics such as electricity and ecosystems. 

Data were collected using three primary instruments. First, the Cognitive Load Rating Scale 
(CLRS) adapted from Leppink et al. (2013) assessed intrinsic, extraneous, and germane load 
using a 7-point Likert scale. Second, a Science Performance Test (SPT) comprising both 
multiple-choice and open-ended questions evaluated conceptual understanding. Third, LMS-
generated analytics provided log data on time-on-task, navigation behavior, and media 
interactions. The AI-driven LMS analyzed student interaction in real-time. CNNs were used to 
assess engagement with visual content and learning behaviors, while LSTM models predicted 
optimal sequencing for each student. Teachers were provided with dashboard insights to guide 
instructional decisions and scaffolding support. 
 
3. Results & Discussion 

Before delving into quantitative comparisons, it is essential to understand the conceptual shift 
introduced by deep learning–driven personalization, particularly in relation to cognitive load 
optimization. Traditional instructional models, while effective for standardized content delivery, are often 
ill-equipped to accommodate the nonlinear and fluctuating cognitive states of individual learners. This 
limitation becomes especially pronounced in science education, where concepts such as energy transfer, 
electrical circuits, or phase changes require both sequential logic and spatial reasoning. Without 
intentional instructional design, these topics can overwhelm novice learners by introducing complexity at 
a pace or level of abstraction that exceeds their working memory capacity. Cognitive Load Theory 
(Sweller, 1988) posits that learning effectiveness depends on how instructional design interacts with three 
distinct types of cognitive load: intrinsic, extraneous, and germane.  
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Figure 1. Cognitive Load Theory 

Source: Adapted from barefootTEFLteacher.com. Retrieved from https://www.barefootteflteacher.com 
 
Intrinsic load refers to the inherent difficulty of the material, which is largely determined 

by its complexity and the learner’s prior knowledge. While this type of load cannot be 
eliminated, it can be moderated through strategic sequencing and scaffolded progression. 
Extraneous load, by contrast, is the unnecessary mental effort caused by poorly designed 
instructional materials such as disorganized content, unclear explanations, or excessive 
multimedia. This type of load is highly detrimental to learning as it diverts cognitive resources 
away from the core task. Germane load represents the productive cognitive effort allocated to 
constructing and automating mental schemas, and it is the type of load educators aim to 
maximize. 

AI-powered personalized learning systems, particularly those enhanced with Convolutional 
Neural Networks (CNNs) and Long Short Term Memory (LSTM) architectures, offer a means of 
actively managing these three cognitive load types in real time. These deep learning models 
continuously monitor learner interaction patterns such as click behavior, response latency, and 
engagement metrics and use this data to recalibrate the instructional experience. For intrinsic 
load, the system ensures that content is sequenced logically and introduced incrementally, 
aligning difficulty with the learner’s current level of understanding. To reduce extraneous load, 
the system adjusts elements such as visual complexity, pacing, textual density, and navigation 
flow, thereby minimizing distractions and redundant processing. Simultaneously, the system 
promotes germane load by offering appropriately timed prompts, generative tasks, and 
multimodal representations that support schema construction and conceptual integration. 

In essence, the optimization process does not aim to reduce cognitive load entirely, but 
rather to redistribute it: minimizing unnecessary extraneous burden, managing intrinsic 
complexity, and maximizing meaningful germane engagement. The effectiveness of this AI-
driven approach is reflected in the comparative matrix presented below, which illustrates 
measurable shifts in each cognitive load dimension as a result of deep learning–enabled 
personalization. 
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Table 1. Matrix of Cognitive Load Types Before and After AI-Driven Personalization 

Cognitive 
Load Type 

Before AI 
Intervention 
(Traditional) 

After AI Intervention 
(DL-Personalized) 

Explanation 

Intrinsic 
Load 

5.1 4.8 
Slight reduction due to better sequencing and 
scaffolding 

Extraneous 
Load 

5.3 3.8 
Significant reduction through visual aids, 
personalized pacing, and clarity 

Germane 
Load 

3.6 4.4 
Increased engagement and deeper processing 
facilitated by adaptive content 

 
Table 1 presents a comparative matrix that illustrates the impact of AI driven 

personalization on the three types of cognitive load intrinsic, extraneous, and germane before and 
after the implementation of a deep learning (DL) based instructional system in primary science 
education. The data reveal a nuanced cognitive shift that underscores the pedagogical benefits of 
employing AI to support learning optimization. 

Firstly, the intrinsic cognitive load shows a modest decrease from 5.1 to 4.8. Although 
intrinsic load is generally tied to the inherent complexity of the subject matter such as abstract 
concepts in energy transfer or the sequential reasoning required in understanding electric 
circuits this slight reduction can be attributed to the system’s enhanced sequencing and 
scaffolding mechanisms. The AI system, informed by convolutional and recurrent neural network 
models, facilitated a more logical progression of content, enabling learners to process complex 
information in more digestible cognitive segments without compromising the depth of the 
material. 

More striking is the reduction in extraneous cognitive load, which declined significantly 
from 5.3 to 3.8. This finding affirms one of the central claims of Cognitive Load Theory (Sweller, 
1988; Leppink et al., 2019): that poorly designed instructional materials can impose 
unnecessary mental strain that distracts learners from core content. The DL-powered 
personalization system actively mitigated such load through various adaptive strategies, 
including personalized pacing, reduction of irrelevant stimuli, the use of multimodal 
representations (e.g., simplified visuals and intuitive layouts), and real-time clarity 
enhancements. These features minimized the cognitive burden unrelated to the core learning 
task, allowing students to allocate more of their working memory capacity to meaningful 
processing. 

Conversely, germane load associated with the mental effort dedicated to constructing and 
automating schema rose from 3.6 to 4.4. This increase signals a positive shift in learners’ 
engagement with and investment in the learning process. The adaptive nature of the AI system 
played a critical role here: by aligning instructional material with students’ individual learning 
histories and interaction patterns, the system fostered deeper cognitive engagement, more 
sustained attention, and an increased propensity for reflective thinking. Rather than being 
passive recipients of generalized instruction, students became active participants in a 
personalized learning trajectory designed to maximize knowledge construction and long-term 
retention. 
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In sum, the cognitive load matrix not only demonstrates the efficacy of deep learning based 
personalization in optimizing cognitive processing but also highlights its pedagogical relevance 
in early science education. The data suggest that AI powered adaptive systems are capable of 
recalibrating the cognitive demands of instructional tasks, reducing non-essential processing, 
and amplifying learning efficiency through intentional design informed by real-time learner 
analytics. These findings provide empirical support for the strategic integration of intelligent 
systems in instructional design, particularly in contexts where cognitive overload is a persistent 
barrier to learning. 

 
Table 2. Cognitive Load Comparison Before and After AI Intervention 

Cognitive Load Type Pre-AI Group Mean Post-AI Group Mean Change (%) 
Intrinsic Load 5.1 4.8 -5.9% 
Extraneous Load 5.3 3.8 -28.5% 
Germane Load 3.6 4.4 +22.2% 

 
The most significant change was observed in extraneous cognitive load. Personalized sequencing, 

multimedia hints, and interface clarity contributed to reducing non-essential cognitive burden. This 
aligns with Chandler and Sweller (1991), who emphasized the value of well-designed learning 
environments in minimizing unnecessary processing. 

Table 2 provides a comparative summary of mean scores for each type of cognitive load intrinsic, 
extraneous, and germane measured before and after the implementation of the AI-driven personalized 
learning system. The data reflect the cognitive impact of the intervention on a group of primary school 
students engaged in science learning activities. The intrinsic load shows a modest reduction from a pre-
intervention mean of 5.1 to 4.8, representing a 5.9% decrease. Intrinsic load corresponds to the inherent 
complexity of the learning material and the learner’s prior knowledge. Although it cannot be eliminated, 
the observed reduction suggests that the AI-assisted system effectively sequenced and scaffolded content, 
making abstract science topics more cognitively manageable without oversimplifying the material. The 
extraneous load demonstrates a significant decrease from 5.3 to 3.8, equating to a 28.5% reduction. This 
substantial improvement indicates that the deep learning–based personalization successfully minimized 
unnecessary and distracting cognitive effort. Factors contributing to this reduction include personalized 
pacing, clearer visual and textual representations, and more intuitive navigation, all of which allowed 
learners to focus their cognitive resources on essential content rather than irrelevant processing. 

In contrast, the germane load increased from 3.6 to 4.4, marking a 22.2% improvement. Germane 
load reflects the mental effort devoted to meaningful learning processes, such as schema construction and 
conceptual integration. The rise in germane load suggests that students were more engaged in deep 
cognitive processing following the AI intervention, likely due to the adaptive nature of the instructional 
content, which aligned with their individual learning needs and stimulated active knowledge building. 
Overall, the table underscores the effectiveness of AI-driven personalization in redistributing cognitive 
load: reducing extraneous and moderating intrinsic load, while enhancing germane engagement. This 
optimization supports better cognitive alignment, learning efficiency, and ultimately deeper 
understanding of complex science concepts. 

 
a. Student Performance and Efficiency 

The most significant change was observed in extraneous cognitive load. Personalized sequencing, 
multimedia hints, and interface clarity contributed to reducing non-essential cognitive burden. This 
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aligns with Chandler and Sweller (1991), who emphasized the value of well-designed learning 
environments in minimizing unnecessary processing. 

 
Table 3. Science Performance Outcomes 

Metric AI Group Control Group 
Pre-Test Mean Score 64.2 65.1 
Post-Test Mean Score 76.8 70.5 
Learning Efficiency Index 0.72 0.48 

 
Table 3 presents a comparative analysis of science performance outcomes between the AI 

intervention group and the control group, focusing on three key metrics: pre-test mean scores, post-test 
mean scores, and the calculated learning efficiency index. The pre-test mean scores reveal that both 
groups began with relatively comparable baseline knowledge in science, with the control group scoring 
slightly higher (65.1) than the AI group (64.2). This minimal difference indicates that the two groups 
were reasonably equivalent in terms of prior knowledge before the intervention. However, the post-test 
mean scores show a notable divergence. The AI group demonstrated a significant improvement, achieving 
an average score of 76.8, compared to 70.5 in the control group. This suggests that students exposed to 
AI-driven personalized learning experienced greater gains in content mastery over the course of the 
instructional period. 

The most striking difference is reflected in the Learning Efficiency Index, a metric that considers 
both the gain in performance and the time or cognitive investment required to achieve it. The AI group 
achieved a higher efficiency score of 0.72, compared to 0.48 in the control group. This indicates that not 
only did the AI group learn more, but they also learned more efficiently, likely due to the adaptive pacing, 
real-time feedback, and reduced cognitive burden provided by the AI-powered system. Taken together, 
the data in Table 3 support the conclusion that deep learning–based personalization not only enhances 
academic performance but also promotes more efficient learning processes in science education. 

 
b. Qualitative Observations 

In addition to quantitative data, qualitative evidence collected through structured classroom 
observations and semi-structured student interviews provided deeper insight into the experiential 
dimension of AI-driven personalized learning. Observational field notes consistently highlighted 
increased student attentiveness, reduced behavioral disengagement, and more frequent on-task 
interactions during science instruction sessions. Teachers reported a noticeable shift in classroom 
dynamics, wherein students demonstrated greater autonomy in navigating digital tasks and were more 
willing to revisit complex concepts independently an indication of increased metacognitive regulation. 

A recurring theme from student interviews was the appreciation of visual and interactive scaffolds. 
One Grade 5 participant remarked, “I liked how the lesson helped me go back to the hard parts with 

pictures and questions.” This reflects not only a positive emotional response but also an emerging strategic 
approach to learning, enabled by the system’s adaptive retrieval prompts and multimodal feedback 
mechanisms. Another student noted that the system "knew" when to slow down or provide support, 
suggesting that the personalization model had perceptible effects on learners’ cognitive comfort and 
pacing. From the teacher perspective, the real-time analytics dashboards integrated into the learning 
management system (LMS) were frequently cited as instrumental in supporting differentiated instruction. 
Teachers emphasized the value of seeing individual and group-level engagement metrics, which enabled 
them to adjust instructional strategies dynamically. One teacher stated, “I could immediately see which 
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students were struggling with the circuit diagrams and adapt the follow-up discussion accordingly.” This 
level of pedagogical agility, powered by AI, represents a significant departure from traditional linear 
lesson delivery models. 

Collectively, the qualitative data suggest that deep learning–driven personalization not only 
improves cognitive efficiency but also positively shapes affective and behavioral dimensions of learning. 
Students felt more in control of their learning trajectories, while teachers gained actionable insights to 
enhance instructional responsiveness both of which are essential for fostering sustained engagement and 
conceptual clarity in science education. 

 
c. Implications for Digital Science Instruction 

The findings of this study hold important implications for the future of digital science instruction, 
particularly within the broader contexts of STEAM education, scientific-based pedagogy, and AI-powered 
educational transformation. Aligning with the Key Submission Track of “STEAM/Scientific-Based 
Education and Digital Transformation & AI in Learning,” the study provides empirical support for how AI 
can serve as a catalyst in resolving long-standing instructional challenges in STEM education specifically 
those related to cognitive overload, motivational barriers, and instructional inflexibility. 

The evidence presented underscores the potential of AI-driven personalization to serve as a cognitive 
optimization tool, not merely a content delivery mechanism. By selectively reducing extraneous cognitive 
load through precise control of visual complexity, information density, and temporal sequencing the 
system ensures that learners are not burdened by irrelevant or distracting stimuli. Simultaneously, the 
increased germane load observed in post-intervention data demonstrates that students were engaging in 
deeper levels of cognitive processing, indicative of schema construction and conceptual internalization. 
These findings also raise important considerations for curriculum and instructional design in digital 
learning environments. The study illustrates the necessity of embedding intelligent feedback loops, 
adaptive retrieval mechanisms, and multimodal scaffolds into science content delivery platforms. 
Instructional materials should not be static repositories of information but dynamic learning ecosystems 
that continuously align with learners’ cognitive, emotional, and behavioral states. Furthermore, the study 
suggests a paradigm shift in the teacher’s role from knowledge transmitter to data-informed learning 
facilitator. With real-time access to cognitive and engagement analytics, educators can make more 
nuanced instructional decisions, optimize the timing of interventions, and support struggling learners 
more proactively. This approach not only enhances individual learning outcomes but also contributes to 
broader systemic goals of equity, inclusivity, and personalization in digital science education. 

In summary, the integration of deep learning models into instructional systems offers transformative 
potential. It redefines the architecture of learning from a rigid, standardized process into a responsive, 
individualized experience that promotes both cognitive efficiency and educational equity. These insights 
are highly relevant for policymakers, instructional designers, and educators seeking to harness AI for 
meaningful innovation in 21st-century science education. 
 
4. Conclusion 

This study demonstrates the significant potential of deep learning–based personalization to 
optimize cognitive load and enhance learning efficiency in primary science education. By 
leveraging advanced neural architectures such as Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory (LSTM) models, the AI-powered instructional system dynamically 
adjusted content sequencing, visual complexity, and feedback delivery to align with individual 
learner profiles. This adaptive approach led to a measurable redistribution of cognitive load: 
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intrinsic load was moderately reduced through improved scaffolding, extraneous load was 
substantially minimized via clarity enhancements and personalized pacing, and germane load 
increased as students engaged more deeply with learning tasks. 

Quantitative results revealed a 28.5% decrease in extraneous cognitive load and a 22.2% 
increase in germane load following the AI intervention, underscoring the system's ability to 
reduce cognitive inefficiencies while amplifying productive mental effort. Correspondingly, the 
AI group outperformed the control group in post-test scores and exhibited a higher learning 
efficiency index, indicating not only better academic outcomes but also a more effective use of 
cognitive resources. Qualitative observations further enriched these findings, revealing 
heightened student engagement, greater metacognitive awareness, and enhanced instructional 
agility among teachers. Learners reported increased comfort with complex science topics and 
demonstrated proactive learning behaviors, while educators utilized real-time analytics to tailor 
support and instruction more responsively. 

Taken together, these findings highlight the transformative potential of deep learning in 
reengineering science instruction from a one-size-fits-all model to a cognitively attuned, 
personalized learning ecosystem. By facilitating more precise management of cognitive load and 
fostering deeper learning engagement, AI-driven personalization emerges as a vital tool in the 
evolution of digital STEAM education. The implications extend beyond technological innovation, 
calling for a redefinition of curriculum design, teacher roles, and instructional practices in the AI 
era toward a future of science education that is both efficient and equitable. 
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