icadual

International Conference on Education for All

Proceeding of the 7" International Conference on Education for All ICEDUALL 2025)
e-ISSN 3025-9517

Deep Learning-Driven Cognitive Load Optimization in

Primary Science Education: A Model of AI Powered

Personalization in the Digital Era

1. Introduction

Dewi Juniayanti'™’, Ni Wayan Purnamasari Dewi’
2Faculty of Teacher Training and Education, Universitas Dwijendra,
Y 8 )

Indonesia

“Corresponding Email: dewijunia57@gmail.com

Abstract. This study investigates the effectiveness of deep learmning based
personalization in optimizing cognitive load and enhancing learning efficiency in
primary science education. Drawing upon Cognitive Load Theory, the research
addresses how advanced Al models specifically Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) architectures can dynamically adjust
instructional content to meet learners’ cognitive needs in real time. Using a quasi-
experimental design, 50 Grade 5 students were divided into Al and control groups,
with the intervention delivered via an Al-enhanced Learning Management System
(LMS). Quantitative findings reveal a 28.5% reduction in extraneous cognitive load
and a 22.2% increase in germane cognitive load among the Al group, alongside
higher post-test performance and a superior learning efficiency index (0.72 vs. 0.48).
These outcomes suggest that the Al-driven system effectively minimized unnecessary
processing while fostering deeper engagement and schema construction. Qualitative
data from classroom observations and student interviews further support these
results, highlighting increased learner autonomy, metacognitive awareness, and
instructional responsiveness. Teachers benefited from real-time analytics, enabling
more adaptive and differentiated instruction. The study concludes that deep learning
personalization not only improves cognitive efficiency but also transforms the
instructional landscape by supporting more equitable, individualized, and cognitively
attuned science learning environments. These findings offer critical implications for
digital pedagogy, curriculum design, and Al integration in STEAM education,
particularly in underrepresented or early learning contexts. By reengineering science
instruction through intelligent technologies, this research contributes to the
development of future-ready, inclusive education systems grounded in cognitive

science and data-informed personalization.
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The 21st century has witnessed the accelerated integration of artificial intelligence (Al) and

deep learning (DL) technologies across various sectors, with education emerging as one of the

most transformative domains. The convergence of pedagogical innovation and computational

intelligence has fostered new paradigms of personalized, data-informed instruction, enabling

educational systems to shift from static, one-size-fits-all approaches toward dynamic, learner-
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centered experiences (Holmes et al., 2022; Zawacki-Richter et al., 2019). In this context, Al-

powered personalization is increasingly viewed as a strategic mechanism to address the
longstanding issue of individual differences in cognitive capacity, prior knowledge, motivation,
and learning pace. Such disparities are particularly evident in primary science education, where
abstract theories, unfamiliar vocabulary, and multistep problem-solving tasks pose significant
cognitive demands on young learners (Xie et al., 2023; Chen et al., 2021).

To address these demands effectively, it is crucial to examine the cognitive architecture that
governs how information is processed, stored, and retrieved. Cognitive Load Theory (CLT),
originally conceptualized by Sweller (1988), provides a robust framework for understanding the
constraints of working memory during learning tasks. CLT distinguishes among three types of
cognitive load: intrinsic load, which arises from the inherent complexity of the content; germane
load, which supports schema construction and automation; and extraneous load, which is
generated by suboptimal instructional design (Leppink et al., 2019). Of particular concern in
digital learning environments is the extraneous cognitive load, as it often results from
unnecessary distractions, poor interface navigation, or ineffective sequencing of content all of
which can severely impede learners’ ability to internalize core scientific concepts (Kalyuga,
2020).

In this regard, recent advances in deep learning offer a promising solution to dynamically
mitigate extraneous load. DL architectures such as Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks have demonstrated exceptional capabilities in
recognizing patterns, predicting learner behavior, and facilitating real-time content adaptation
based on user interaction data (Tuomi, 2022). These technologies can model complex, temporal
learning trajectories and personalize content not only based on performance outcomes but also on
affective and behavioral signals such as hesitation, navigation paths, or engagement drops
(Luckin et al., 2023). The implications of such models for primary science instruction are
profound: by intelligently aligning instructional delivery with learners' evolving cognitive states,
Al systems can help reduce the extraneous cognitive burden, thereby enhancing the
effectiveness and efficiency of learning (Chen et al., 2021; Xie et al., 2023).

Nevertheless, despite the theoretical promise and growing interest in Al in education
(AIED), there remains a paucity of empirical studies focusing on how deep learning-based
personalization directly impacts cognitive load dimensions, particularly in early education
contexts within underrepresented or non-Western settings. The majority of existing research
tends to concentrate on higher education, well-resourced environments, or controlled laboratory
conditions, thus limiting the generalizability of findings (Zawacki-Richter et al., 2019; Holmes et
al., 2022). Furthermore, few studies systematically examine the interplay between Al-driven
adaptation and the cognitive processing demands of science content, which often involves
multimodal reasoning, dynamic visualizations, and procedural understanding.

This study addresses this empirical and contextual gap by investigating the extent to which
deep learning-driven personalization can reduce extraneous cognitive load and improve learning
efficiency in primary science education. By applying convolutional and recurrent neural
architectures within a customized learning management system (LMS), the research aims to

monitor, interpret, and adapt to students' cognitive and behavioral patterns in real time. The
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focus on primary learners is particularly strategic, as this developmental stage is critical for
establishing foundational scientific literacy and fostering long-term interest in STEM disciplines.
Through a quasi-experimental mixed-methods approach, this study not only seeks to quantify
cognitive load reduction but also to explore how intelligent instructional systems can contribute
to more equitable and cognitively optimized science learning environments.

Ultimately, the goal is to provide both theoretical insights and practical guidance for the
implementation of Al in education. By centering cognitive optimization through deep learning
personalization, this research contributes to the broader discourse on how intelligent
technologies can be harnessed to support more inclusive, effective, and future-ready models of

teaching and learning.

2. Method

This research employed a quasi-experimental pre-test/post-test design involving control and
experimental groups. The intervention centered on a Learning Management System (LMS)
integrated with convolutional neural networks (CNNs) and long short-term memory (LSTM)
models to personalize science learning content. The system adapted presentation formats and
learning sequences based on student behavior and performance patterns. A total of 50 Grade 5
students from four public elementary schools in Bali participated. They were randomly assigned
to either the Al-intervention group (n = 25) or the control group (n = 25). The intervention
lasted four weeks and focused on science topics such as electricity and ecosystems.

Data were collected using three primary instruments. First, the Cognitive Load Rating Scale
(CLRS) adapted from Leppink et al. (2013) assessed intrinsic, extraneous, and germane load
using a 7-point Likert scale. Second, a Science Performance Test (SPT) comprising both
multiple-choice and open-ended questions evaluated conceptual understanding. Third, LMS-
generated analytics provided log data on time-on-task, navigation behavior, and media
interactions. The Al-driven LMS analyzed student interaction in real-time. CNNs were used to
assess engagement with visual content and learning behaviors, while LSTM models predicted
optimal sequencing for each student. Teachers were provided with dashboard insights to guide

instructional decisions and scaffolding support.

3. Results & Discussion

Before delving into quantitative comparisons, it is essential to understand the conceptual shift
introduced by deep learning—driven personalization, particularly in relation to cognitive load
optimization. Traditional instructional models, while effective for standardized content delivery, are often
ill-equipped to accommodate the nonlinear and fluctuating cognitive states of individual learners. This
limitation becomes especially pronounced in science education, where concepts such as energy transfer,
electrical circuits, or phase changes require both sequential logic and spatial reasoning. Without
intentional instructional design, these topics can overwhelm novice learners by introducing complexity at
a pace or level of abstraction that exceeds their working memory capacity. Cognitive Load Theory
(Sweller, 1988) posits that learning effectiveness depends on how instructional design interacts with three

distinct types of cognitive load: intrinsic, extraneous, and germane.

Deep Learning-Driven Cognitive Load Optimization in Primary Science Education...(29-38)



icadual

International Conference on Education for All Proceeding of the 7" International Conference on Education for All ICEDUALL 2025)
e-ISSN 3025-9517

Cognitive Load Theory

Intringic Load
(complexity of ..
new information)

Germane Load Extraneous Load

(linking new info (unnececcary and
with curvent info) distracting info)

Figure 1. Cognitive Load Theory
Source: Adapted from barefootTEFLteacher.com. Retrieved from https://www.barefootteflteacher.com

Intrinsic load refers to the inherent difficulty of the material, which is largely determined
by its complexity and the learner’s prior knowledge. While this type of load cannot be
eliminated, it can be moderated through strategic sequencing and scaffolded progression.
Extraneous load, by contrast, is the unnecessary mental effort caused by poorly designed
instructional materials such as disorganized content, unclear explanations, or excessive
multimedia. This type of load is highly detrimental to learning as it diverts cognitive resources
away from the core task. Germane load represents the productive cognitive effort allocated to
constructing and automating mental schemas, and it is the type of load educators aim to
maximize.

Al-powered personalized learning systems, particularly those enhanced with Convolutional
Neural Networks (CNNs) and Long Short Term Memory (LSTM) architectures, offer a means of
actively managing these three cognitive load types in real time. These deep learning models
continuously monitor learner interaction patterns such as click behavior, response latency, and
engagement metrics and use this data to recalibrate the instructional experience. For intrinsic
load, the system ensures that content is sequenced logically and introduced incrementally,
aligning difficulty with the learner’s current level of understanding. To reduce extraneous load,
the system adjusts elements such as visual complexity, pacing, textual density, and navigation
flow, thereby minimizing distractions and redundant processing. Simultaneously, the system
promotes germane load by offering appropriately timed prompts, generative tasks, and
multimodal representations that support schema construction and conceptual integration.

In essence, the optimization process does not aim to reduce cognitive load entirely, but
rather to redistribute it: minimizing unnecessary extraneous burden, managing intrinsic
complexity, and maximizing meaningful germane engagement. The effectiveness of this Al-
driven approach is reflected in the comparative matrix presented below, which illustrates
measurable shifts in each cognitive load dimension as a result of deep learning—enabled

personalization.

Deep Learning-Driven Cognitive Load Optimization in Primary Science Education...(29-38)


https://www.barefootteflteacher.com/

icadual

International Conference on Education for All Proceeding of the 7" International Conference on Education for All ICEDUALL 2025)
e-ISSN 3025-9517

Table 1. Matrix of Cognitive Load Types Before and After AI-Driven Personalization

Before Al
Cognitive . After Al Intervention .

Intervention . Explanation
Load Type . (DL-Personalized)

(Traditional)
Intrinsic 51 48 Slight reduction due to better sequencing and
Load ' ' scaffolding
Extraneous 53 38 Significant reduction through visual aids,
Load ' ' personalized pacing, and clarity
Germane 36 44 Increased engagement and deeper processing
Load ) ) facilitated by adaptive content

Table 1 presents a comparative matrix that illustrates the impact of Al driven
personalization on the three types of cognitive load intrinsic, extraneous, and germane before and
after the implementation of a deep learning (DL) based instructional system in primary science
education. The data reveal a nuanced cognitive shift that underscores the pedagogical benefits of
employing Al to support learning optimization.

Firstly, the intrinsic cognitive load shows a modest decrease from 5.1 to 4.8. Although
intrinsic load is generally tied to the inherent complexity of the subject matter such as abstract
concepts in energy transfer or the sequential reasoning required in understanding electric
circuits this slight reduction can be attributed to the system’s enhanced sequencing and
scaffolding mechanisms. The Al system, informed by convolutional and recurrent neural network
models, facilitated a more logical progression of content, enabling learners to process complex
information in more digestible cognitive segments without compromising the depth of the
material.

More striking is the reduction in extraneous cognitive load, which declined significantly
from 5.3 to 3.8. This finding affirms one of the central claims of Cognitive Load Theory (Sweller,
1988; Leppink et al., 2019): that poorly designed instructional materials can impose
unnecessary mental strain that distracts learners from core content. The DL-powered
personalization system actively mitigated such load through various adaptive strategies,
including personalized pacing, reduction of irrelevant stimuli, the use of multimodal
representations (e.g., simplified visuals and intuitive layouts), and real-time clarity
enhancements. These features minimized the cognitive burden unrelated to the core learning
task, allowing students to allocate more of their working memory capacity to meaningful
processing.

Conversely, germane load associated with the mental effort dedicated to constructing and
automating schema rose from 3.6 to 4.4. This increase signals a positive shift in learners’
engagement with and investment in the learning process. The adaptive nature of the Al system
played a critical role here: by aligning instructional material with students’ individual learning
histories and interaction patterns, the system fostered deeper cognitive engagement, more
sustained attention, and an increased propensity for reflective thinking. Rather than being
passive recipients of generalized instruction, students became active participants in a
personalized learning trajectory designed to maximize knowledge construction and long-term

retention.
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In sum, the cognitive load matrix not only demonstrates the efficacy of deep learning based
personalization in optimizing cognitive processing but also highlights its pedagogical relevance
in early science education. The data suggest that Al powered adaptive systems are capable of
recalibrating the cognitive demands of instructional tasks, reducing non-essential processing,
and amplifying learning efficiency through intentional design informed by real-time learner
analytics. These findings provide empirical support for the strategic integration of intelligent
systems in instructional design, particularly in contexts where cognitive overload is a persistent

barrier to learning.

Table 2. Cognitive Load Comparison Before and After Al Intervention

Cognitive Load Type Pre-AlI Group Mean Post-Al Group Mean Change (%)
Intrinsic Load 5.1 4.8 -5.9%
Extraneous Load 5.3 3.8 -28.5%
Germane Load 3.6 4.4 +22.2%

The most significant change was observed in extraneous cognitive load. Personalized sequencing,
multimedia hints, and interface clarity contributed to reducing non-essential cognitive burden. This
aligns with Chandler and Sweller (1991), who emphasized the value of well-designed learning
environments in minimizing unnecessary processing.

Table 2 provides a comparative summary of mean scores for each type of cognitive load intrinsic,
extraneous, and germane measured before and after the implementation of the Al-driven personalized
learning system. The data reflect the cognitive impact of the intervention on a group of primary school
students engaged in science learning activities. The intrinsic load shows a modest reduction from a pre-
intervention mean of 5.1 to 4.8, representing a 5.9% decrease. Intrinsic load corresponds to the inherent
complexity of the learning material and the learner’s prior knowledge. Although it cannot be eliminated,
the observed reduction suggests that the Al-assisted system effectively sequenced and scaffolded content,
making abstract science topics more cognitively manageable without oversimplifying the material. The
extraneous load demonstrates a significant decrease from 5.3 to 3.8, equating to a 28.5% reduction. This
substantial improvement indicates that the deep learning—based personalization successfully minimized
unnecessary and distracting cognitive effort. Factors contributing to this reduction include personalized
pacing, clearer visual and textual representations, and more intuitive navigation, all of which allowed
learners to focus their cognitive resources on essential content rather than irrelevant processing.

In contrast, the germane load increased from 3.6 to 4.4, marking a 22.2% improvement. Germane
load reflects the mental effort devoted to meaningful learning processes, such as schema construction and
conceptual integration. The rise in germane load suggests that students were more engaged in deep
cognitive processing following the Al intervention, likely due to the adaptive nature of the instructional
content, which aligned with their individual learning needs and stimulated active knowledge building.
Overall, the table underscores the effectiveness of Al-driven personalization in redistributing cognitive
load: reducing extraneous and moderating intrinsic load, while enhancing germane engagement. This
optimization supports better cognitive alignment, learning efficiency, and ultimately deeper

understanding of complex science concepts.

a. Student Performance and Efficiency
The most significant change was observed in extraneous cognitive load. Personalized sequencing,

multimedia hints, and interface clarity contributed to reducing non-essential cognitive burden. This
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aligns with Chandler and Sweller (1991), who emphasized the value of well-designed learning

environments in minimizing unnecessary processing.

Table 3. Science Performance Qutcomes

Metric AI Group Control Group
Pre-Test Mean Score 64.2 65.1
Post-Test Mean Score 76.8 70.5
Learning Efficiency Index  0.72 0.48

Table 3 presents a comparative analysis of science performance outcomes between the Al
intervention group and the control group, focusing on three key metrics: pre-test mean scores, post-test
mean scores, and the calculated learning efficiency index. The pre-test mean scores reveal that both
groups began with relatively comparable baseline knowledge in science, with the control group scoring
slightly higher (65.1) than the Al group (64.2). This minimal difference indicates that the two groups
were reasonably equivalent in terms of prior knowledge before the intervention. However, the post-test
mean scores show a notable divergence. The Al group demonstrated a significant improvement, achieving
an average score of 76.8, compared to 70.5 in the control group. This suggests that students exposed to
Al-driven personalized learning experienced greater gains in content mastery over the course of the
instructional period.

The most striking difference is reflected in the Learning Efficiency Index, a metric that considers
both the gain in performance and the time or cognitive investment required to achieve it. The Al group
achieved a higher efficiency score of 0.72, compared to 0.48 in the control group. This indicates that not
only did the Al group learn more, but they also learned more efficiently, likely due to the adaptive pacing,
real-time feedback, and reduced cognitive burden provided by the Al-powered system. Taken together,
the data in Table 3 support the conclusion that deep learning—based personalization not only enhances

academic performance but also promotes more efficient learning processes in science education.

b. Qualitative Observations

In addition to quantitative data, qualitative evidence collected through structured classroom
observations and semi-structured student interviews provided deeper insight into the experiential
dimension of Al-driven personalized learning. Observational field notes consistently highlighted
increased student attentiveness, reduced behavioral disengagement, and more frequent on-task
interactions during science instruction sessions. Teachers reported a noticeable shift in classroom
dynamics, wherein students demonstrated greater autonomy in navigating digital tasks and were more
willing to revisit complex concepts independently an indication of increased metacognitive regulation.

A recurring theme from student interviews was the appreciation of visual and interactive scaffolds.

One Grade 5 participant remarked, “I liked how the lesson helped me go back to the hard parts with
pictures and questions.” This reflects not only a positive emotional response but also an emerging strategic
approach to learning, enabled by the system’s adaptive retrieval prompts and multimodal feedback
mechanisms. Another student noted that the system "knew" when to slow down or provide support,
suggesting that the personalization model had perceptible effects on learners’ cognitive comfort and
pacing. From the teacher perspective, the real-time analytics dashboards integrated into the learning
management system (LMS) were frequently cited as instrumental in supporting differentiated instruction.
Teachers emphasized the value of seeing individual and group-level engagement metrics, which enabled

them to adjust instructional strategies dynamically. One teacher stated, “I could immediately see which
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students were struggling with the circuit diagrams and adapt the follow-up discussion accordingly.” This
level of pedagogical agility, powered by Al, represents a significant departure from traditional linear
lesson delivery models.

Collectively, the qualitative data suggest that deep learning—driven personalization not only
improves cognitive efficiency but also positively shapes affective and behavioral dimensions of learning.
Students felt more in control of their learning trajectories, while teachers gained actionable insights to
enhance instructional responsiveness both of which are essential for fostering sustained engagement and

conceptual clarity in science education.

c. Implications for Digital Science Instruction

The findings of this study hold important implications for the future of digital science instruction,
particularly within the broader contexts of STEAM education, scientific-based pedagogy, and Al-powered
educational transformation. Aligning with the Key Submission Track of “STEAM/Scientific-Based
Education and Digital Transformation & Al in Learning,” the study provides empirical support for how Al
can serve as a catalyst in resolving long-standing instructional challenges in STEM education specifically
those related to cognitive overload, motivational barriers, and instructional inflexibility.

The evidence presented underscores the potential of Al-driven personalization to serve as a cognitive
optimization tool, not merely a content delivery mechanism. By selectively reducing extraneous cognitive
load through precise control of visual complexity, information density, and temporal sequencing the
system ensures that learners are not burdened by irrelevant or distracting stimuli. Simultaneously, the
increased germane load observed in post-intervention data demonstrates that students were engaging in
deeper levels of cognitive processing, indicative of schema construction and conceptual internalization.
These findings also raise important considerations for curriculum and instructional design in digital
learning environments. The study illustrates the necessity of embedding intelligent feedback loops,
adaptive retrieval mechanisms, and multimodal scaffolds into science content delivery platforms.
Instructional materials should not be static repositories of information but dynamic learning ecosystems
that continuously align with learners’ cognitive, emotional, and behavioral states. Furthermore, the study
suggests a paradigm shift in the teacher’s role from knowledge transmitter to data-informed learning
facilitator. With real-time access to cognitive and engagement analytics, educators can make more
nuanced instructional decisions, optimize the timing of interventions, and support struggling learners
more proactively. This approach not only enhances individual learning outcomes but also contributes to
broader systemic goals of equity, inclusivity, and personalization in digital science education.

In summary, the integration of deep learning models into instructional systems offers transformative
potential. It redefines the architecture of learning from a rigid, standardized process into a responsive,
individualized experience that promotes both cognitive efficiency and educational equity. These insights
are highly relevant for policymakers, instructional designers, and educators seeking to harness Al for

meaningful innovation in 21st-century science education.

4. Conclusion

This study demonstrates the significant potential of deep learning—based personalization to
optimize cognitive load and enhance learning efficiency in primary science education. By
leveraging advanced neural architectures such as Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) models, the Al-powered instructional system dynamically
adjusted content sequencing, visual complexity, and feedback delivery to align with individual

learner profiles. This adaptive approach led to a measurable redistribution of cognitive load:
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intrinsic load was moderately reduced through improved scaffolding, extraneous load was
substantially minimized via clarity enhancements and personalized pacing, and germane load
increased as students engaged more deeply with learning tasks.

Quantitative results revealed a 28.5% decrease in extraneous cognitive load and a 22.2%
increase in germane load following the Al intervention, underscoring the system's ability to
reduce cognitive inefficiencies while amplifying productive mental effort. Correspondingly, the
Al group outperformed the control group in post-test scores and exhibited a higher learning
efficiency index, indicating not only better academic outcomes but also a more effective use of
cognitive resources. Qualitative observations further enriched these findings, revealing
heightened student engagement, greater metacognitive awareness, and enhanced instructional
agility among teachers. Learners reported increased comfort with complex science topics and
demonstrated proactive learning behaviors, while educators utilized real-time analytics to tailor
support and instruction more responsively.

Taken together, these findings highlight the transformative potential of deep learning in
reengineering science instruction from a one-size-fits-all model to a cognitively attuned,
personalized learning ecosystem. By facilitating more precise management of cognitive load and
fostering deeper learning engagement, Al-driven personalization emerges as a vital tool in the
evolution of digital STEAM education. The implications extend beyond technological innovation,
calling for a redefinition of curriculum design, teacher roles, and instructional practices in the Al

era toward a future of science education that is both efficient and equitable.
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